Development of Surface Crack and Corrosion Pit Fatigue Crack Growth Threshold Region Data

Overview

Principal tasks:

 Develop surface crack and corrosion pit threshold data

Surface Crack and Corrosion Specimens

- High cycle fatigue systems are prone to mechanically-induced surface cracks and corrosion pitting
- Components are shot-peened to retard surface crack growth
- How do these surface cracks and corrosion pits behave with respect to published, standardized crack growth data?

Creating Surface Cracks

- Laser etching used to put in surface cracks
 - Photo is 0.012 inches in depth
 - Semi-circular surface crack
- Photos and surface crack information provided by Aaron Nardi, Hamilton Sundstrand Corp.

12.5 mil Deep Surface Crack

Comment: Sample with CCAT parameter set from April 19, 2006. Using cutting parameters of 20 khz frequency, 25 pulse width, 100 mm/s, and cleaning parameters of 80khz pulse frequency 2.5 pulse width and 500 mm/s. 2 cutting passes then 1 cleaning pass. Incrementing down in length and up in power visuoessive passes.

Making the 12.5 mil deep Crack

Comment: Sample with CCAT parameter set from April 19, 2006. Using cutting parameters of 20 khz frequency, 25 pulse width, 100 mm/s, and cleaning parameters of 80khz pulse frequency 2.5 pulse width and 500 mm/s. 2 cutting passes then 1 cleaning pass. Incrementing down in length and up in power v sucessive passes.

Centerline of Crack

Comment: Sample with CCAT parameter set from April 19, 2006. Using cutting parameters of 20 khz frequency, 25 pulse width, 100 mm/s, and cleaning parameters of 80khz pulse frequency 2.5 pulse width and 500 mm/s. 2 cutting passes then 1 cleaning pass. Incrementing down in length and up in power v sucessive passes.

Creating Corrosion Pits

- Rely upon methods used in the rotorcraft and propeller industries.
- Coat specimen with wax
- Scratch through wax where pits are wanted
- Immerse specimen in electrified salt-bath
- Pit depth varies with immersion time

Test Plan

- Surface CrackSpecimens
 - 7075-T7351 AI
 - D6AC Steel
 - Unpeened
 - Shot-peened
 - 60 to be tested at NASA JSC
 - 20 to be tested at FAA TC

- Corrosion Specimens
 - 7075-T7351 AI
 - D6AC Steel
 - Unpeened
 - Shot-peened
 - 60 to be tested at NASA JSC
 - 20 to be tested at FAA TC

All testing to be performed concurrently

Laboratory Specimen

- Damage
 - Laser-etched surface crack
 - Corrosion Pit
- Peening
 - Front and Rear Surfaces

DC Potential Drop

- DC Current through specimen
- Measured resistance is equated to crack area
- Visual measurements on surface used to determine crack width
- Crack size and aspect ratio computed

Geometry and Electric Potential Wire Displacement Locations

Analysis

- Residual Stress Profiles
 - X-Ray
 - Hole Drilling

- Near Threshold Testing
 - Estimate threshold w/unpeened specimens
 - Compare to traditional C(T) data
 - Estimate threshold w/peening
 - Compare measured residual stresses to affect of peening on threshold

Analysis

- Develop K solution for pits
 - Use 3D boundary element method
 - Model pit morphology to get accurate K's
 - Utilize modeled K values to compare to standard crack solution

- Corrosion vs. Crack
 - Compare SC data to pits in same materials and conditions
 - Compare pit data to traditional crack growth data

Summary

- Develop surface crack threshold data
- Develop corrosion pit threshold data
- Empirically define surface crack and corrosion thresholds in peened structure
- Compare surface crack and corrosion data to traditional threshold data
- Develop a method to qualitatively use threshold data for design